"Visiting a time when galaxies were young" - HST & Beyond

NGST concepts

Science Objectives

- Study the birth of the first galaxies
- Determine the shape and fate of the Universe
- Study formation of stars and planets
- Observe the chemical evolution of the Universe
- Probe the nature of dark matter

Technology Highlights

- Precision deployable & inflatable structures
- Large, low areal density cold active optics
- Simulation based design
- Passive cooling
- Autonomous operations & onboard scheduling

NGST Mission Profile

Parameter	Requirement	Goal				
Wavelength Range	1-5 µm	0.5-30µm				
Aperture Diameter	>4m	>8m				
Angular Resolution	Diffraction-limited at 2µm	Diffraction limited at 0.5µm				
Spectral Resolution	100 - 1000	100 - 3000				
Optics Temperature	< 60K	30K				
Field of View	4'x4' at 1-5µm	add 2'x2' coverage 5-30μm				
Sensitivity	Zodiacal background limited at 1 A.U. orbit	Cosmic infrared background limited				
Instantaneous sky coverage	> 20% available					
Mission sky coverage	100% available					
Lifetime	5 years	10 years				
Orbit	L2 or 1 A.U. drift	1x3 A.U.				

Core Science Programs

Target Class	Study Objective	Target AB magnitudes
Deep Fields	One deep field (down to AB magnitude 32) and 100 less deep (AB 30) flanking fields will be observed in broad band filters	30-32
Universe at redshifts z > 2	Primeval spheroids, birth and evolution of disks, the origin of heavy elements, birth and evolution of AGN	29 (near-IR) 26 (thermal-IR)
Supernovae study	Improve our knowledge of the geometry of the Universe and study the material universe before the birth of galaxies	31
Stellar populations in the nearby universe	Color-magnitude to the horizontal branch luminosity both in the optical and in the near	30.5-32
Cosmic Distances	Studies based on gravitational lensing and gravitational time delays, determine dark matter distribution	27
Kuiper Belt object searches	Statistically meaningful study of their properties as well as of the distribution in space	30 (near-IR) 25 (thermal-IR)
Individual object classes	Variety of studies in both imaging and spectroscopy that can take advantage of the NGST performance, e.g., star formation and the late stages of stellar evolution	

Projected Sensitivity 1000 24 NGST **Spectroscopy Keck** Flux density (nJy) 26 **Protogalaxies** NGST 28 3 < z < 30 **Imaging** 30 **Globular Clusters** 3 < z < 30 Wavelength (microns)

Sensitivity of an 8m diameter NGST compared with various astronomical phenomena in the early universe. The NGST curves, show the signal-to-noise=10 response in 10000 seconds for wide band imaging modes and low resolution spectroscopy ($R\sim100$).

Hardware Development

Prototype active membrane mirror (d = 0.5m, thickness = 2mm) developed by the Univ. of Arizona

Precision deployable structure model developed by TRW.

Proposed Timetable

Tasks Date	FY 1997	FY 1998	FY 1999	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008
	Pre-Phase	A	Phase A		Phase B				Phase C/D			Phase I
Project Flow			Industr	Technology								
			GSFC Led Tech	nology Stretch St	udies							
Technology Challenges		_			A							
Project Milestones				▲PNAR	NAR	▲ PDR▲	CDR	1			LAUNCH	^
Technology Readiness Points			Detectors C	Telescope onfiguration Infla	Orbit Selection tables							